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The dynamics of the Kelvin-Helmholtz instability are investigated in the kinetic, high-frequency regime with a
novel, two-dimensional, mesh-free tree code. In contrast to earlier studies which focused on specially prepared
equilibrium configurations in order to compare with fluid theory, a more naturally occurring plasma-vacuum
boundary layer is considered here with relevance to both space plasmas and linear plasma devices. Quan-
titative comparisons of the linear phase are made between the fluid and kinetic models. After establishing
the validity of this technique via comparison to linear theory and conventional PIC simulation for classical
benchmark problems, a quantitative analysis of the more complex magnetized plasma-vacuum layer is pre-
sented and discussed. It is found that in this scenario, the finite Larmor orbits of the ions result in significant
departures from the effective shear velocity and width underlying the instability growth, leading to generally
slower development and stronger nonlinear coupling between fast growing short-wavelength modes and longer
wavelengths.

I. INTRODUCTION

The Kelvin-Helmholtz instability is an important and
ubiquitous phenomena in magnetized plasmas. In prin-
ciple it can occur in any situation where there are
crossed, stationary magnetic and electric fields produc-
ing a sheared E × B drift, typically at plasma-vacuum
boundaries where the differing gyro-radii of the ions and
electrons generates a charge separation with associated
electrostatic field. If the strength of the shear exceeds a
certain threshold, Kelvin-Helmholtz (KH) vortices start
to grow, feeding on the plasma kinetic drift energy. Like
many instabilities it manifests itself in various guises
depending on the time- and length scales dictated by
the local plasma density, temperature and geometry. In
space plasmas, the KH instability has long been touted
as a likely candidate for coupling momentum and energy
from the solar wind to and from the magnetosphere1–3.
In laboratory magnetized plasmas, the KH instability is
typically found in regions of tangency to walls or lim-
iters, but can also form across separatrix layers or as
a secondary instability in zonal flows developing from
drift-wave-type turbulence. Experimental investigations
of plasma structures and cross-field transport due to a
competition between drift waves and sheared E ×B ro-
tation in linear plasma devices have been carried out in a
number of plasma devices beginning with Q-machines4.
In these linear devices the velocity shear is maximized
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in the shadow region of a limiter that is typically intro-
duced in the plasma to restrict the plasma diameter and
a great deal of progress has been made in characterizing
shear flow instabilities in this region5–7. External gener-
ation and control of KH instabilities can be performed in
these devices by externally biasing the plasma relative to
the chamber walls8.

A clear distinction can be made between the fluid
regime, characterized by length scales L much larger
than the ion gyro-radius rL,i and correspondingly long

timescales t ≫ ω−1
c,i ; and the more complex, high-

frequency kinetic regime, in which rL,i/L ≫ 1. In the
former instance the instability can be described by clas-
sic fluid theory9 and has been successfully modeled with
multi-dimensional MHD codes10. In this paper we fo-
cus entirely on the collisionless kinetic regime, revisiting
a problem which was first tackled over 20 years ago by
a series of papers utilizing particle-in-cell simulation to
shed light on the long-lived vortex structures which de-
velop after the initial linear growth phase.

One of the first works to consider this version of the
KH instability was by Pritchett & Coroniti11. They con-
sidered a homogeneous plasma with an initial velocity
shear v0y(x) and profile oriented perpendicular to the
magnetic field B0 = B0ẑ, giving a self-consistent elec-
trostatic field E0x(x) = −B0v0y(x). This geometry is
amenable to a full 2-fluid eigenmode analysis of the linear
phase of the instability, allowing the authors to demon-
strate agreement between the PIC simulations and the
incompressible MHD equations in the small gyro-radius
limit rL,i ≤ L. In the opposite, kinetic case of interest
they found that the linear growth rates were significantly
reduced, and that the KH vortices grew and merged up to
the largest wavelength permitted by the simulation box,
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speculating that in reality, there should be physical limit-
ing factors to the steady-state vortex size. Pritchett12 fol-
lowed up this work with a shorter study on a slightly dif-
ferent geometry in which the E×B drift and subsequent
instability is driven by a localized electric field, pointing
out that the KH mode in this configuration had growth
rates vastly exceeding those for a similar ion-cyclotron
instability13.

A slightly different approach to the problem was taken
by Horton et al.14, who used an implicit, guiding center
PIC code to study the KH instability for high magnetic
field strengths and long time-scales. This choice allowed
them to make quantitative comparison of the long-time
vortex behavior with fluid theory. As in Ref.11, their
simulations were also set up with a homogeneous density
and prescribed velocity shear profile with a characteris-
tic width a of the form vy = v0 tanh(x/a), facilitating an
extensive analysis of vortex dynamics and particle trans-
port. They identified three stages of vortex development:
i) exponential growth, ii) saturation of the fastest grow-
ing mode and subsequent merging, and iii) single vortex
evolution. A complementary study in the same geom-
etry was performed by Cai et al.15, who compared the
linear growth rates of the fluid (rL,i/a ≪ 1) and kinetic
(rL,i/a > 1) regimes over a wide range of parameters.
Like Pritchett & Coroniti, Cai et al. used a 2D explicit
PIC code, but with a special particle-loading algorithm to
initialize the shear flow profile in equilibrium16. Despite
the modest statistics, the ’quiet start’ for the KH insta-
bility allowed them to observe up to 6 decades of expo-
nential growth in some of the modes (see Fig.4 of Ref.15,
finding generally lower growth rates for larger Larmor
radii.)

While the above works already shed light on the linear
and nonlinear behavior of the kinetic KH instability, for
ease of comparing with linear theory they all assumed
a homogeneous plasma density. An attempt to model a
true boundary layer more typical of plasma devices was
made by Theilhaber & Birdsall17–19, who considered a
plasma in contact with a perfectly conducting wall (see
Fig.1 of Ref.18). This scenario differs in a number of
respects: first, the particle population is dynamic – par-
ticles being absorbed by the wall and re-injected pair-
wise within the plasma volume; second, the plasma-wall
boundary layer and subsequent velocity shear are allowed
to develop spontaneously via the charge separation re-
sulting from the respective ion and electron gyro-radii.
Interestingly, for the linear regime they also find agree-
ment with fluid theory for long wavelength modes, but
divergence at short wavelengths apparently due to finite-
Larmor-radius (FLR) effects. A summary of these earlier
works can be found in Table I.

The purpose of the present paper is to revisit the col-
lisionless, kinetic KH instability problem in the context
of a more general plasma-vacuum boundary layer, with-
out imposing restrictions on the shear flow velocity or
electric field. In doing so, we introduce a new, mesh-free
technique based on an electrostatic tree code, using the

linear growth regime to gauge its effectiveness against a
traditional 2D PIC code in terms of performance and res-
olution of short-wavelength modes. An analogous com-
parison has recently been published by Umeda et al.20,
who benchmark a 2D2V Vlasov code against a PIC code
in the low-frequency regime (neglecting the electron cy-
clotron motion). We also take advantage of the vastly
improved computing power available since these early
works, to probe the onset of the nonlinear phase of KH
vortex dynamics with full electron and ion dynamics.

The paper is organized as follows: Section II describes
the numerical model used to perform simulations of the
various scenarios in the following sections. In Section III
we benchmark the method by reproducing the dispersion
relation of a warm magnetized plasma at homogeneous
density and also comparing the results to a PIC simula-
tion in equivalent geometry. This is followed in Section
IV by a study of the classical Kelvin-Helmholtz insta-
bility in a homogeneous plasma. Then, we investigate a
novel kind of instability at a free plasma-vacuum bound-
ary layer in Section V identifying resemblances and de-
partures from the classical case. The paper is concluded
with a discussion in Section VI.

II. DESCRIPTION OF NUMERICAL MODELS

A. Tree Code

To treat the problem numerically, we model the plasma
as an ensemble of particles confined to the x-y plane with
no dependence on the z coordinate. The force between
two particles (or strictly speaking, particle rods) i and j
is thus:

Fij =
qiqj

2π ∥xi − xj∥2
(xi − xj) . (1)

Particle motion is governed by the Newtonian equa-
tions of motion with a force term that consists of a
Lorentz force term due to the externally imposed mag-
netic field and the sum of all binary interactions with all
other particles:

miẍi = qiẋi ×B0 +
∑
j ̸=i

Fij (2)

The Barnes-Hut tree algorithm21 lowers the complex-
ity of evaluating the right hand side sum for every par-
ticle from O

(
N2
)
to O (N logN). It achieves this accel-

eration by replacing interactions between a particle and
a compact group of multiple distant partners by a sin-
gle interaction with the corresponding multipole moment.
These moments are calculated explicitly for small groups
or even single particles and are then combined into a hi-
erarchy of coarser moments for increasingly larger groups
in a tree data structure. An evaluation of the sum of pair
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TABLE I. Summary of previous studies of kinetic KH instability

Ref mi/me ωc,e/ωp,e ωc,i/ωp,i rL,i/λD,e rL,i/a Box size Lx × Ly Longest run

(λ2
D,e)

11 16-1836 0.19-1.5 128× 128 700 ω−1
p,e

12 1836 0.032-2.4 128× 64 229 ω−1
c,i

14 1600 10-80 0.006-0.03 6.4 a× 6.4 a 1000 a/v0
15 16 0.1-0.5 0.006-0.03 0.1-1.0 128× 512 660 ω−1

p,e
17-19 40 5.5 0.35-1.4 0.1-1.0 5 rL,i × 40 rL,i 437 ω−1

c,i

interactions is equivalent to a traversal of the tree which
selects as interaction partners those multipole moments
that meet an acceptance criterion based on a target ac-
curacy.

The force law given in equation (1) is the fundamental
solution of the laws of electrostatics with open boundary
conditions. To accommodate the periodic boundary con-
ditions often used in simulations of plasma physics, the
tree code regards the rectangular simulation domain as
the unit cell of a periodic lattice and takes into account
the contributions to the electric potential and field due
to a large number of replicas of this unit cell along the
lattice axes following a two-fold approach. The contribu-
tion due to the replicas in a thin layer around the central
cell are calculated by explicitly shifting the xi in equa-
tion (1) and running the same tree traversal algorithm
as for the central cell. The thickness of the layer is cho-
sen such that all replicas outside of it are well-separated
from the central cell, i.e. their multipole expansion can
be translated into a local Taylor-like expansion of the po-
tential and the electric field that converges. Based only
on the description of the periodic lattice, it is then pos-
sible to construct operators that efficiently calculate the
contribution due to more than ten nonillion (10 × 1030)
periodic replicas22,23. Earlier incarnations of this code
have been used in the context of ion acceleration from
laser-plasmas24; a fully parallel version is described in25.

We choose units that are based on collective quanti-
ties of the electron species in the unperturbed plasma:
Length: electron Debye length λD,e = 1; Time: inverse
electron plasma frequency ωp,e = 1; Mass: electron mass
me = 1; Charge: elementary charge e = 1 = −qe; Tem-
perature: electron temperature Te = 1.

It immediately follows that vth,e = λD,eωp,e = 1 and
ρe/ϵ0 = −1. The quantities describing electron cyclotron
motion are in terms of the background magnetic field
B0: the cyclotron frequency ωc,e = B0 and the Larmor
radius rL,e = vth,e/ωc,e = 1/B0. For the ion species,
we define the mass mi = µme, charge qi = −qe, and
temperature Ti = τTe, where µ is the ion/electron mass
ratio; τ the temperature ratio. Thus, their characteristic
length and time scales become λD,i =

√
τλD,e, ωp,i =

ωp,e/
√
µ, rL,i =

√
µτrL,e and ωc,i = ωc,e/µ. The units

for the electric and magnetic field in this system are:

[E] =
mevth,eωp,e

e
[B] =

meωp,e

e
(3)

III. WARM MAGNETIZED PLASMA WITH UNIFORM
DENSITY

In order to benchmark the new grid-free model, we
first perform simulations of a textbook plasma system
that can be treated analytically. We choose a warm ho-
mogeneous plasma permeated by a constant background
magnetic field oriented along the z-axis. The boundary
conditions are periodic in the x and y directions and it
is assumed that all derivatives along the z-axis vanish.

We initialize a warm magnetized electron/ion plasma
with homogeneous density in a square region of size
Lx = Ly = 100 rL,i containing Ne = Ni = 107 parti-
cles. The normalized plasma parameters are as follows:
background magnetic field strength B0 = 2, mass ratio
µ = 16 and temperature ratio τ = 1. We integrate the
plasma particle trajectories starting at ωc,it = 0 and end-
ing at ωc,it = 60 using a time-step of ωc,i∆t = 0.0067.

Although particle trajectories are computed by the tree
code algorithm entirely without use of a computational
grid, the electric potential and electric field are addition-
ally computed on a grid of Nx ×Ny = 1000 × 1000 grid
points spanning the simulation domain every 10 time-
steps and written to disk. From this data we directly
compute the dispersion relation of the warm magne-
tized plasma by averaging the data along one spatial axis
while applying a Fourier transformation (which assumes
equidistant sample points) along the other to obtain a
spectrum in wave number space at every time step. Fol-
lowing Welch’s method26, we then apply a Parzen win-
dowing function27 to the resulting time series to obtain
a double Fourier spectrum in frequency/wave number
space.

FIG. 1 shows the resulting spectrum for a large range
of frequencies and wave numbers. It reproduces a mul-
titude of ion cyclotron modes (horizontal lines separated
by ωc,i) and also the first three electron modes (horizon-
tal lines at multiples of 16 ωc,i = ωc,e). It is worth noting
that for this particular data sample, the frequency resolu-
tion was limited to ∆ω ≃ 0.1 ωc,i whereas ωmax ≃ 47 ωc,i.
Likewise, the equivalent parameters for the spatial spec-
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tra were ∆krL,i ≃ 0.06, kmaxrL,i ≃ 31, whereby the latter
could easily be increased by using more diagnostic grid
points independently of the trajectory calculation. The
effective spatial resolution achieved by the tree code is
governed by an additional smoothing parameter in eq
(1), which in this case was set to ϵ ≃ 0.16 rL,i, or more
than five times the average interparticle spacing to ensure
that the plasma remained effectively collisionless28.

FIG. 1. Frequency/wave number spectrum determined from
Ey.

FIG. 2 shows a zoom of the same data over a reduced
frequency/wave number range. Overlayed as red dots is
the numerical solution of the analytic dispersion relation
of the set-up, given in29. The energy contained in the
electric field in the simulations is concentrated near the
modes predicted by the analytic dispersion relation. The
agreement between the tree code and the analytic solu-
tions of the long-wavelength ion modes is striking and
validates its use as an alternative to PIC for kinetic sim-
ulation of magnetized plasmas.
For comparison to the grid-free code results we per-

formed 2D electrostatic PIC simulations with a stan-
dard finite-sized model30 using similar parameters (sys-
tem size, particle number, mass and temperature ratio,
etc.) as described above with quadratic interpolation for
particle density and force calculations. Finite-particle
size shape factor values of ax = ∆ = ay, where ∆ = λD,e,
were chosen. The spectral analysis of the electric field
data was performed using the same procedure as the grid-
free model and is shown in FIG. 2 (b).

IV. CLASSICAL KELVIN-HELMHOLTZ SCENARIO

To make a connection with previous kinetic studies of
the Kelvin-Helmholtz instability, we now turn our focus
to the classical scenario of two counter-streaming plasma-
filled half spaces.
We reproduce experiment I from15 by initializing a

warm magnetized plasma in a box of dimensions Lx =
25.6rL,i and Ly = 102.4rL,i with a mass ratio of µ = 16
and subject to a static magnetic field along the z-axis of

(a) Zoom of the frequency/wave number spectrum in FIG. 1
determined from Ey. The analytic dispersion relation from29 is

denoted by the red dots.
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(b) Same analysis as in a) computed instead from a 2D PIC code
with 1000× 1000 grid points and 107 particles per species.

FIG. 2. Details of the dispersion relation determined from
the tree algorithm simulations in comparison to the analytical
results and results obtained by a PIC simulation.

strength B0 = 2. Ions are loaded with uniform density,
while electrons are loaded at the same density but with
a slight perturbation along the x-axis superimposed such
that the charge density of the bump satisfies: ρ̃ = ϵ0∂xẼ
and Ẽ = −V0B0tanh (x/a) where V0 is the velocity shear
strength and a is the shear layer width. In this example
we take a = rL,i and V0 = ωc,ia. We use a particle load-
ing technique similar to that described in16 to initialize
electrons and ions.

The boundary conditions for the particle trajectories
are periodic in the y-direction. Particles that leave the
simulation box at the top are reintroduced at the bottom
with their velocities left unchanged. In the x-direction,
we apply a reflecting boundary with a suitable particle
loading mechanism that follows method II in31 in order
to restrict the particles to the original plasma filled region
while suppressing surface currents. For the electrostatic
potential and accompanying electric field, the boundary
conditions are also periodic in the y-direction and open
on both sides in the x-direction.
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FIG. 3. Electrostatic potential Φ and y-component of elec-
trostatic field Ey. Numerical indices refer to points in time
during the linear phase at ωc,it = 18.75 (1) and the non-linear
phase ωc,it = 43.75 (2).

In order to study the dispersion relation of the classical
setup, we apply the same Fourier analysis technique as
described in section III to the early part of the simulation,
up to the point where the instability growth saturates
and starts to exhibit non-linear behavior (ωc,it ≃ 20), see
FIG. 3. We note in passing that the nonlinear phase is
also characterized by vortex pairing and merging seen in
the Φ2 plot in FIG. 3, as noted in earlier works12,14,15,17.
FIG. 4 (a) shows the experimental dispersion relation

for the linear phase of the classical setup. Apparently,
most of the energy is contained in the purely growing
modes at low frequencies and low wave numbers kyrL,i ≤
2. As in the homogeneous density setup, the first electron
modes at ω = 16 ωc,i are visible. Due to the limited
amount of time it takes for the instability to reach the
non-linear phase, the frequency resolution is too coarse
to distinguish single ion cyclotron modes in this case.
FIG. 4 (b) shows a zoom into the low frequency and

low wavenumber part of the dispersion relation. This
figure confirms, that most of the energy is contained in
the purely growing low frequency modes. A wave number
kyrL,i = 0.5 corresponds to the fastest growing mode
with λy = 4πrL,i in FIG. 3.
To make a quantitative comparison with classical fluid

theory and the results in15, we compute the growth
rates of each mode from the development of Ey(ky) close
to the sheath center. We average the Ey(ky) over a
corridor of width 2.56 rL,i and determine the growth
rates γ (ky) by fitting an exponential model Ey(ky, t) =
Ey,0(ky) exp (γ (ky) t). The growth rates are depicted
in FIG. 5 together with data from Cai et al.’s PIC-
simulations, and once again show excellent agreement.

V. PLASMA-VACUUM INTERFACE

Having established that our numerical model exhibits
the expected behavior in the conventional KH case, we

(a) (b)

FIG. 4. Dispersion relation determined from Ey.
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FIG. 5. Normalized growth rate determined from Ey(ky) at
the center of the sheath (x = 12.5rL,i in FIG. 3). Our results
in black, Cai et al. results in grey, theory as solid line.

now turn to the scenario of primary interest wherein a
half-space filled with a plasma at homogeneous density
is bounded by another empty half space. The initial dy-
namics of this situation is quite different to that in the
previous section so it is worth illustrating the main fea-
tures qualitatively before we go into a more detailed anal-
ysis.

A. Setup

Initially, the simulation domain is divided into two
half-spaces by the y–z-plane. While the half-space along
the negative part of the x-axis is empty, the other one
is homogeneously filled with a collisionless magnetized
two-species plasma. The constant background magnetic
field B0 = B0ẑ is present across the whole region, see
FIG. 6 (a).

Under the influence of the magnetic field, some of the
particles that are at first close to the plasma-vacuum in-
terface will follow a gyro-motion trajectory that takes
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TABLE II. Plasma parameters for the simulation runs of the
plasma-vacuum interface instability presented in this paper

Run mi/me ωc,e/ωp,e ωc,i/ωp,i rL,i/λD,e Box size Lx × Ly

(r2L,i)

1 4 2 1 1 50× 125

2 16 2 0.5 2 25× 62.5

3 100 2 0.2 5 10× 25

them out of the plasma half-space. As the Larmor ra-
dius is proportional to

√
mT , a heavier ion species at the

same temperature as the electrons will be carried farther
outside of the boundary, FIG. 6 (b). This creates a pos-
itively charged region in front of the bulk plasma while
at the same time leaving a surplus of negative charge
at its edge, FIG. 6 (c). The resulting electric field is
parallel to the density gradient along the x-axis and, in
combination with the background magnetic field, creates
a sheared drift velocity vy(x) = −Ex(x)/B0 which feeds
the KH instability, FIG. 6 (d).
It is important to note that in contrast to the classi-

cal homogeneous setup in Section IV, the resulting shear
layer width a in this case results naturally from the
charge separation driven by the contrasting gyro-motion
of the two particle species.

FIG. 6. (a) Initial plasma-vacuum interface with orientation
of relevant fields and different larmor radii of the two species.
(b) Different density gradient for the two species. (c) Charge
separation around the boundary. (d) The resulting electric
field.

Table I gives the parameters used in our simulations.

B. Eigenmode analysis

Based on the scenario just described, it is possible to
derive a simple model of the plasma-vacuum setup from
a two fluid picture of the species σ ∈ {i, e}. Initially, the
plasma is in a steady state, described by the fluid quan-
tities nσ,0 = nσ,0(x) and vσ,0 = vσ,0(x)ŷ, the resulting

electric field E0 = E0(x)x̂ and the background magnetic
field B0 = B0ẑ.

Assuming perturbations of the form Ψ(x, y, t) =
Ψ̄(x) exp i(ky − ωt), Ψ ∈ {nσ,1,vσ,1,E1} the linearized
continuity equation reads

i (ω − kvσ,0)nσ,1 = iknσ,0vσ,1,y + ∂x(vσ,1,xnσ,0) (4)

The perturbed velocities vσ,1 are assumed to be due to
an E ×B drift caused by the perturbed electric field:

vσ,1,x = E1,y/B0 and vσ,1,y = −E1,x/B0. (5)

Finally, Gauss’s law and Farraday’s law of induction
relate the components of the perturbed electric field E1

to one another and to the perturbed charge density ρ1 =∑
σ qσnσ,1:

∂xE1,y = ikE1,x, (6)

∂xE1,x + ikE1,y =
∑
σ

qσnσ,1. (7)

Combining equations (4), (5), (6), and (7) leads to
an eigenvalue equation that takes into account distinct,
spatially varying equilibrium density and velocity profiles
for each of the two plasma species.

∂xxE1,y =

(
k2 −

∑
σ

kqσ∂xnσ,0

B0(kvσ,0 − ω)

)
E1,y (8)

Under the assumption that the equilibrium velocity
profiles are equal for both species and based on an E×B
drift due to the equilibrium electric field

vσ,0 = v0 = −E0

B0
, (9)

∂xv0 = −∂xE0

B0
= − 1

B0

∑
σ

qσnσ,0, (10)

the eigenvalue equation given by Cai et al. in15 can be
recovered:

∂xxE1,y =

(
k2 − k

ω − kv0
∂xxv0

)
E1,y. (11)

C. Numerical results and analysis

We now turn to the fully kinetic model of the vari-
ous plasma-vacuum scenarios given in table II. At the
beginning of the simulation, the particles – due to their
thermal motion under the influence of the magnetic field
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FIG. 7. Per-species charge densities (ρe and ρi) and velocities
(ve and vi), total charge density (ρ) and x-component of the
electric field (Ex) all averaged along the y-axis as functions
of x for run 2.

– travel along a circular path that takes those particles
with a guiding center close to the initially sharp plasma-
vacuum interface outside of the bulk plasma region. As
expected the heavier ions have a larger Larmor radius and
thus travel farther from the initial interface and already
after a time ωc,it = 18.75 a charge separation and result-
ing electric field as shown in FIG. 7 has developed. This
electric field in combination with the static background
magnetic field causes anE×B drift of the guiding centers
in the negative y-direction as illustrated schematically in
FIG. 6.
After a few ion cyclotron periods, a periodic defor-

mation of the initially straight plasma-vacuum inter-
face grows along the y-axis in the densities of both
species, causing in turn a periodic perturbation of the
y-component of the electric field. FIG. 8 shows the per-
species charge densities as well as the electric potential
and y-component of the electric field during the linear
phase of the instability (ωc,it = 18.75) and later at the
onset of the non-linear phase (ωc,it = 31.25).

1. Tracer particle trajectories

As the velocity shear in the plasma-vacuum interface
scenario is not externally imposed but rather develops as
a result of the initial conditions, we use the trajectories of
tracer particles to determine the characteristic scales of
the shear layer, namely its width a and the shear strength
V0. We initialize a large number of ions close to the
plasma vacuum boundary with initial conditions (particle
positions and velocity distribution) that are compatible
to those used in the simulations. The particle trajectories
are integrated off-line, i.e., we re-use the time-dependent

(a) Per-species charge densities

(b) Electrostatic potential and field

FIG. 8. Per-species charge densities ρe and ρi and electro-
static potential Φ and y-component of the electrostatic field
Ey (units as in equation (3)) for run 2. Numerical indices
refer to points in time during the linear phase at ωc,it = 18.75
(1) and the non-linear phase ωc,it = 31.25 (2).

electric field data that has been written to disk during
the simulations to solve the ion equation of motion

ẍ =
qi
mi

(ẋ×B0 +E0) . (12)

For simplicity, internal forces between these sample
ions are not taken into account.

FIG. 9 shows example tracer particle trajectories. The
trajectory in the leftmost panel is typical for a particle
close to the plasma boundary with a small drift velocity.
Due to a high initial (thermal) velocity, the particle is
able to overcome the spatially limited electric field and
hence only a part of its overall trajectory is influenced by
it. Conversely, the trajectory shown in the middle panel
is typical for a large drift velocity. It belongs to a particle
with a comparatively low initial velocity which is almost
completely deflected by the electric field at the boundary
and follows a severely deformed trajectory. The right-
most panel shows the trajectory of an ion with a guiding
center inside the bulk plasma, far away from the bound-
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ary that is not under the influence of an electric field and
therefore does not drift.

FIG. 9. Example ion trajectories in black (grey) starting at
ωc,it = 0 and ending at ωc,it = 18.75 (ωc,it = 31.25) for run 2.
Shown are the particles with a small (left) and a large (middle)
drift velocity at the plasma edge as well as a randomly selected
particle (left) inside the bulk plasma.

We calculate the drift velocity vdrift for every particle
by taking the displacement of the guiding center along
the y-axis during a certain time interval and dividing
by the length of that interval. To determine the shape
of the velocity shear profile, we calculate ⟨vdrift(x)⟩ by
partitioning the particle population into slices based on
the x-coordinate of their guiding centers and taking the
mean drift velocity of each slice. The resulting profile is
shown in 7. Finally, we use a fit of a hyperbolic tangent
profile ⟨vdrift(x)⟩ = V0

(
tanh

(
x−x0

a

)
− 1
)
to determine a

and V0.
Figure 10 shows the local velocity distribution for three

of the slices placed outside the bulk plasma region, close
to the plasma-vacuum boundary and inside the bulk
plasma. While the distribution is centered around zero
and narrowly peaked inside the bulk plasma, its center
moves towards larger absolute values moving across the
boundary, outside of the plasma. At the same time, the
width of the distribution increases and the total number
of particles in a slice becomes less.

2. Growth rates

The dispersion curve of the instability during the lin-
ear phase is determined by applying the same procedure
described in section IV. To obtain a representative sam-
ple of the field in the edge region, several Ey(ky) spec-
tra were averaged across a layer that is centered on the
plasma-vacuum interface and 5 rL,i wide (see FIG. 7).
FIG. 11 shows two comparisons of the growth rate spec-
tra for runs 1 – 3 with different kinds of normalization
applied.
First, FIG. 11 (a) shows the wave numbers and associ-

ated growth rates in terms of the electron Debye length
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FIG. 10. Slices of the spatially resolved velocity distribution
f(xgc, vgc,y) at x ≃ −rL,i (top) x ≃ 0 (middle) and x ≃ 6rL,i

(bottom) for run 2

and electron plasma frequency, which are the same for all
three runs. In this set of units, all three runs exhibit com-
parable growth rates at comparable wavelengths. The
analytic model for the classical Kelvin-Helmholtz insta-
bility however predicts a scaling of the wave numbers of
unstable modes with the inverse of the shear layer width
a and of the growth rates themselves with the ratio of
shear strength to layer width V0/a. As noted earlier,
the shear layer and its characteristic quantities a and
V0 are not externally imposed as they are in the classi-
cal setup, but develop self-consistently during the course
of the simulation. Their values, as determined from the
particle trajectories (see section VC1), are given in table
III. The variation between runs, especially in the shear
strength V0, in contrast to the very similar growth rates
in all three runs suggests that the ion velocity shear can-
not be the only driving mechanism behind the instability.

Second, FIG. 11 (b) shows the three spectra normal-
ized by respective effective shear layer widths ã and ve-
locity shear strengths Ṽ0. These effective normalization
factors where determined by performing a least squares
fit of the analytic growth rate spectrum for the classical
Kelvin-Helmholtz instability to the experimental growth
rate spectra. The effective parameters can be understood
as the characteristic scales that the ion velocity shear lay-
ers would need to exhibit in order to be explained by the
theory for the classical Kelvin-Helmholtz scenario. The
resulting ã and Ṽ0 for all runs can also be found in ta-
ble III. Comparing them to the actual scales of the ion
velocity shear layers (a and V0) found by means of the
particle trajectories, explaining the growth rate spectra
by means of the analytical model for the classical sce-
nario would indicate a more narrow layer at significantly
reduced shear strength in every run.
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TABLE III. Effective shear layer width ã and effective velocity
shear strength Ṽ0

Run a/rL,i V0/vth,i ã/rL,i Ṽ0/vth,i

1 0.70 0.10 0.36 0.051

2 0.75 0.29 0.18 0.10

3 0.63 0.86 0.072 0.26
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and effective velocity shear strength Ṽ0, see table III

FIG. 11. Comparison of growth rate spectra from runs 1 – 3

3. Dispersion relation

FIG. 12 shows the dispersion relation of the instability
in the plasma-vacuum set-up. Similar to the dispersion
relation of the classical case, most of the power is con-
centrated around lower frequencies and wave numbers
corresponding to the growing unstable modes. Some of
the lowest ion cyclotron modes (divided by ωc,i) are also
visible as is the lowest electron mode (at ω = 16 ωc,i).
The modes show a noticeable slant towards higher fre-

quencies at higher wave numbers. This slope is roughly
compatible with ω = V0ky. The slant due to the shear
velocity V0 is superimposed in the upper panel of FIG. 12
while the lower part displays additional curves due to the

minimum and the maximum velocities. Compared to the
equivalent dispersion plot in FIG. 4 (a) for the classical
KH case, we can see that apart from the shift in spectral
density to higher mode numbers, the net drift ensures
that the unstable modes also connect along the surface,
leading to more rapid mixing during the linear growth
phase.

FIG. 12. Dispersion relation determined from Ey for run 2.
The velocity shear strength V0 is shown for reference.

VI. CONCLUSIONS

In the present work we have revisited a commonly re-
curring problem in plasma boundary layers – the Kelvin
Helmholtz instability – with a particular emphasis on
the high-frequency kinetic regime likely to be prevalent
in plasma-vacuum interfaces found in plasma devices and
certain astrophysical contexts. In doing so we have in-
troduced and a new mesh-free kinetic model, establishing
its validity via standard benchmarks for magnetized plas-
mas. In the simplest scenario, the dispersion relation of a
homogeneous, magnetized plasma was obtained and ver-
ified with high spectral resolution, the results with the
new model comparing favorably with equivalent calcula-
tions using a standard 2-dimensional PIC code.

Previous kinetic simulations of the classical Kelvin-
Helmholtz instability generated by a shear flow in a ho-
mogeneous plasma could also be reproduced by the new
model, the numerical results for the instability growth
curve γ(k) also agreeing well with fluid theory. This
benchmarked model was then used to tackle the more
typical plasma-vacuum scenario in which anE×B drift is
set up via the reversed sheath created by the ion Larmor
orbits. Despite the topological differences to the classical
KH case – in particular the fact that the electron and ion
density profiles of the plasma-vacuum interface were al-
lowed to evolve self-consistently – the latter nevertheless
exhibits a KH-like instability with a similar characteris-
tic growth curve. More detailed analysis of the ion orbits
reveals that a self-similar growth curve for different mass
ratios (analogous to the classical case) by rescaling the
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shear flow velocities and layer width to values reflecting
the reduced population of boundary layer ions actually
driving the instability.
In absolute terms, the PV incarnation of the KH in-

stability grows more slowly than its classical counterpart,
but we still observe the onset of the nonlinear phase after
a few tens of ion cyclotron periods, acting on a scale of
several ion Larmor radii. From FIG. 11 (a) and FIG. 12
the real frequency and growth rates can be estimated
and compared to observed density gradient-driven/KH
fluctuations using LAPD parameters8,32. With maxi-
mum growth rate γ/Ωc,i ≃ 0.00375 from FIG. 11 (a)
and fc,i ≃ 450kHz in LAPD, the growth time is approx-
imately 94.3µsec. FIG. 12 indicates a broad frequency
range above and below the ion cyclotron frequency with
perpendicular wavelength range kyrL,i ∼ 0.5−5 dominat-
ing. This indicates that kinetic effects may well be impor-
tant for KH-induced instabilities in linear plasma devices
such as the LAPD and PSI-2. Inspection of longer runs
with our model reveals nonlinear edge turbulence similar
to that observed with fluid simulations in33 performed
with parameters close to the LAPD plasma. While anal-
ysis of the nonlinear regime in cylindrical geometry is be-
yond the scope of this work, the present work indicates
that fully kinetic simulations of this scenario to deter-
mine the cross-field particle and heat transport are well
within reach using present-day supercomputers.
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ã
γ
/
Ṽ
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